Minimal energy of unicyclic graphs of a given diameter

Feng Li

Department of Applied Mathematics, College of Science, South China Agricultural University, Guangzhou 510640, People's Republic of China

Bo Zhou*

Department of Mathematics, South China Normal University, Guangzhou 510631, People's Republic of China E-mail: zhoubo@scnu.edu.cn

The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. For a given positive integer d with $3 \le d \le n-2$, we characterize the graphs with minimal energy in the class of unicyclic graphs with n vertices and a given diameter d.

KEY WORDS: energy, diameter, unicyclic graphs, characteristic polynomial

AMS subject classification: 05C50, 05C35

1. Introduction

Let G be a simple graph with n vertices. The characteristic polynomial of G, denoted by $\phi(G)$, is defined as

$$\phi(G) = \det(xI - A(G)) = \sum_{i=0}^{n} a_i(G) x^{n-i},$$

where *I* is the identity matrix of order *n* and A(G) is an adjacency matrix of *G*. The roots of the equation $\phi(G) = 0$, denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, are the eigenvalues of the graph *G*. Since A(G) is symmetric, all eigenvalues of *G* are real. The energy of *G*, denoted by E(G), is then defined by

$$E(G) = \sum_{i=1}^{n} |\lambda_i|.$$

*Corresponding author.

476

In chemistry, the energy of a given molecular graph is of interest since it is closely related to the total π -electron energy of the molecule represented by that graph. See Refs. [1–3] for more details on graph-energy concept and a survey of the mathematical properties and results.

For a graph G with n vertices, let $b_i(G) = |a_i(G)|$, i = 0, 1, ..., n. Note that $b_0(G) = 1$, $b_1(G) = 0$, and $b_2(G)$ is the number of edges of G. For convenience, let $b_i(G) = 0$ if i < 0. Let m(G, k) be number of k-matchings of G. If G is an acyclic graph, then [1] $b_{2k}(G) = m(G, k)$ and $b_{2k+1}(G) = 0$ for all k.

A connected graph with n vertices and n edges is called a unicyclic graph. Obviously, a unicyclic graph has exactly one cycle.

Let $\mathcal{G}(n)$ be the class of graphs with *n* vertices whose components are all trees except at most one being a unicyclic graph. That is, any graph in $\mathcal{G}(n)$ is either acyclic or contains exactly one cycle. By Sachs theorem and the Coulson integral formula [1, 2], we have [4, 5]

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2} \ln\left[\left(\sum_{j=0}^{\lfloor n/2 \rfloor} b_{2j}(G) x^{2j}\right)^2 + \left(\sum_{j=0}^{\lfloor n/2 \rfloor} b_{2j+1}(G) x^{2j+1}\right)^2\right].$$
 (1)

Thus E(G) is a monotonically increasing function of $b_i(G)$, i = 1, 2, ..., n. Let $G_1, G_2 \in \mathcal{G}(n)$. If $b_i(G_1) \ge b_i(G_2)$ for all $i \ge 0$, then we write $G_1 \ge G_2$. If $G_1 \ge G_2$ and there is an i_0 such that $b_{i_0}(G_1) > b_{i_0}(G_2)$, then we write $G_1 \ge G_2$. So from (1) we have the following increasing property of energy:

$$G_1 \succ G_2 \Rightarrow E(G_1) \succ E(G_2).$$
 (2)

This increasing property of energy has been used in the study of extremal values of energy over some classes of graphs. For instance, Gutman [4] determined the trees with minimal and maximal energies. Hou [5] determined the unicyclic graphs with minimal energy, and Yan and Ye [6] determined trees of a given diameter with minimal energy. More results in this direction can be found in Refs. [7-12].

Let $\mathcal{U}(n, d)$ be the class of unicyclic graphs with *n* vertices and diameter *d*, where $2 \leq d \leq n-2$. By the result of Ref. [5], the graph obtained by attaching n-3 pendant edges to a vertex of a triangle is the unique graph in $\mathcal{U}(n, 2)$ with minimal energy. In this paper, we will prove that for $3 \leq d \leq n-2$, the graph $U_{n,d}$ is the unique graph in $\mathcal{U}(n, d)$ with minimal energy, where the graph $U_{n,d}$ is shown in figure 1.

2. Preliminaries

Denote by P_n the path with *n* vertices. For two graphs *G* and *H*, $G \neq H$ means *G* and *H* are not isomorphic, and $G \supseteq H$ means *G* contains *H* as a subgraph.

Figure 1. Graph $U_{n,d}$ with $d \ge 3$.

Lemma 1. Let G be a graph in $\mathcal{G}(n)$.

(a) If G contains exactly one cycle C_r and uv is an edge on this cycle, then

$$b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) - 2b_{i-r}(G - C_r) \text{ if } r \equiv 0 \pmod{4},$$

$$b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) + 2b_{i-r}(G - C_r) \text{ if } r \not\equiv 0 \pmod{4}.$$

(b) If uv is a cut edge of G, then

$$b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v).$$

Proof. For edge uv of G, it is known [1, 13] that

$$\phi(G) = \phi(G - uv) - \phi(G - u - v) - 2\sum_{C \in \mathcal{C}} \phi(G - C),$$

where C is the set of cycles of G containing uv. In particular, if uv is a cut edge, then

$$\phi(G) = \phi(G - uv) - \phi(G - u - v).$$

Now (a) and (b) follow by equating coefficients of x^{n-2k} on both sides of identities above.

Remark. If uv is a pendant edge with pendant vertex u, then lemma 1(b) becomes

$$b_i(G) = b_i(G - u) + b_{i-2}(G - u - v).$$

Lemma 2. Let G be an acyclic graph and G' a spanning subgraph (resp. proper spanning subgraph) of G. Then $G \succeq G'$ (resp. $\succ G'$).

Lemma 3. Let G be a unicyclic graph and G' a graph obtained from G by deleting at least one edge outside its unique cycle. Then $G \succ G'$.

Proof. Let $H \in \{G, G'\}$ and uv be an edge on the unique cycle C_r in H. If $r \neq 0 \pmod{4}$, by lemma 1 (a)

$$b_i(H) = b_i(H - uv) + b_{i-2}(H - u - v) + 2b_{i-r}(H - C_r).$$

Since G' is a proper spanning subgraph of G, we have by lemma 2 that b_i $(G - uv) \ge b_i(G' - uv), b_{i-2}(G - u - v) \ge b_{i-2}(G' - u - v)$, and $b_{i-r}(G - C_r) \ge b_{i-r}(G' - C_r)$. So we have $b_i(G) \ge b_i(G')$, and $b_2(G) > b_2(G')$, and then $G \succ G'$. If $r \equiv 0 \pmod{4}$, then $b_{2k+1}(H) = 0$. By lemma 1 (a)

$$b_{2k}(H) = b_{2k}(H - uv) + b_{2k-2}(H - u - v) - 2b_{2k-r}(H - C_r)$$

= $m(H, k) - 2m(H - C_r, k - \frac{r}{2}),$

i.e., $b_{2k}(H)$ is the number of k-matchings of H that contain at most r/2-1 edges of the cycle C_r . So $b_{2k}(H) = \sum_S m(H_S, k - |S|)$, where summation goes over all non-perfect matchings S of C_r , and where H_S is the graph obtained from H by deleting the end vertices of S and other edges of C_r . Since for any S, G'_S is a subgraph of G_S , we have $m(G_S, k - |S|) \ge m(G'_S, k - |S|)$ and then $b_{2k}(G) \ge$ $b_{2k}(G')$ for all k. Note that $b_2(G) > b_2(G')$. We have $G \succ G'$.

Lemma 4. [1, 12]. For $2 \leq i \leq \lfloor \frac{n}{2} \rfloor$ and $n \geq 4$,

$$P_n \succ P_i \cup P_{n-i} \succ P_1 \cup P_{n-1}.$$

Let $\mathcal{T}(n, d)$ be the class of trees with *n* vertices and diameter *d*, where $2 \leq d \leq n-2$. Let $B_{n,d}$ be a graph obtained from the path P_d by attaching n-d pendant edges to an end vertex of P_d . Let $Y_n = B_{n,3}$. Let $K_{1,n-1}$ be the star with *n* vertices.

Lemma 5. [4]. For $n \ge 5$,

$$P_n \succ Y_n \succ K_{1,n-1}$$
.

Lemma 6. [6]. Let $T \in \mathcal{T}(n, d)$ and $T \neq B_{n,d}$. Then $T \succ B_{n,d}$.

Lemma 7. If $d > d_0 \ge 3$, then $B_{n,d} \succ B_{n,d_0}$.

Proof. Note that for any integer $k \ge 1$,

$$m(B_{n,d}, k) = m(B_{n-1,d-1}, k) + m(B_{n-2,d-2}, k-1),$$

$$m(B_{n,d-1}, k) = m(B_{n-1,d-1}, k) + m(P_{d-2}, k-1).$$

Since P_{d-2} is a proper subgraph of $B_{n-2,d-2}$, we have $m(B_{n-2,d-2}, k-1) \ge m(P_{d-2}, k-1)$ and this inequality strict for k = 2. Hence $m(B_{n,d}, k) \ge m(B_{n,d-1}, k)$ and this inequality strict for k = 2. It follows that $B_{n,d} \succ B_{n,d-1} \succ \cdots \succ B_{n,d_0}$.

Figure 2. Graphs G_i , $i = 1, \ldots, 5$.

For minimal energies in T(n, d), we point out that in [12, theorem 1] a condition $T \neq T(n, d; 1, 0, ..., 0, n - d - 2)$ should be added.

By lemma 1 (b), it is easy to see that the following lemma holds. It is known [9] that similar result holds for bipartite graphs.

Lemma 8. Let $G, G' \in \mathcal{G}(n)$. Let uv (resp. u'v') be a pendant edge with the pendant vertex u (resp. u') of the graph G (resp. G'). If $G-u \geq G'-u'$, and $G-u-v \succ G'-u' - v'$, or $G-u \succ G'-u'$, and $G-u-v \geq G'-u' - v'$, then $G \succ G'$.

3. Main results

Now we consider the minimal energy of graphs in U(n, d) with $3 \le d \le n-2$. We first consider the case d = n-2.

Lemma 9. Let $G \in \mathcal{U}(n, n-2)$ with $n \ge 5$ and $G \ne U_{n,n-2}$. Then $G \succ U_{n,n-2}$.

Proof. We prove the lemma by induction on n. If n = 5, then G is isomorphic to G_1 or G_2 . (See figure 2.) It is easy to see that

$$\phi(G_1) = x^5 - 5x^3 - 2x^2 + 4x + 2, \qquad \phi(G_2) = x^5 - 5x^3 - 2x^2 + 3x, \phi(U_{5,3}) = x^5 - 5x^3 + 2x.$$

It is obvious that $G_i > U_{5,3}$ for i = 1, 2.

If n = 6, then G is isomorphic to G_3 , G_4 or G_5 . (See figure 2.) Note that

$$\phi(G_3) = x^6 - 6x^4 - 2x^3 + 8x^2 + 4x - 1, \qquad \phi(G_5) = x^6 - 6x^4 + 6x^2, \\ \phi(G_4) = x^6 - 6x^4 - 2x^3 + 7x^2 + 2x - 1, \qquad \phi(U_{6,4}) = x^6 - 6x^4 + 5x^2.$$

It is obvious that $G_i > U_{6,4}$ for i = 3, 4, 5.

Suppose that the result holds for graphs in $\mathcal{U}(n-1, n-3)$ and $\mathcal{U}(n-2, n-4)$ and that $G \in \mathcal{U}(n, n-2)$ and $G \neq U_{n,n-2}$ where $n \ge 7$.

Let u (resp. u') be a pendant vertex, adjacent to v (resp. v'), which has the largest distance to a vertex on the unique cycle of G (resp. $U_{n,n-2}$). Then the degree of v is 2. So $G - u \in \mathcal{U}(n - 1, n - 3)$, $G - u - v \in \mathcal{U}(n - 2, n - 4)$, and $U_{n,n-2} - u' = U_{n-1,n-3}$, $U_{n,n-2} - u' - v' = U_{n-2,n-4}$.

480

Since $G \neq U_{n,n-2}$, we have $G-u \neq U_{n-1,n-3}$ or $G-u-v \neq U_{n-2,n-4}$. By the induction assumption, we have either $G-u \succ U_{n-1,n-3}$ and $G-u-v \succeq U_{n-2,n-4}$, or $G-u \succeq U_{n-1,n-3}$ and $G-u-v \succ U_{n-2,n-4}$. By lemma 8, $G \succ U_{n,n-2}$. \Box

Now we are ready to prove our main result:

Theorem 1. Let $G \in \mathcal{U}(n, d)$ with $d \ge 3$ and $G \ne U_{n,d}$. Then $E(G) > E(U_{n,d})$.

Proof. By the increasing property (2) of energy, it suffices to prove that $G \succ U_{n,d}$. We prove this by induction on n-d.

By lemma 9, the result holds for n - d = 2.

Let $p \ge 3$ and suppose that the result holds for n - d < p. Now suppose that n - d = p. Let u' be the vertex of degree 3 in $U_{n,d}$ and v' a vertex on the quadrangle that is adjacent to u'. By lemma 1 (a)

$$b_i(U_{n,d}) = b_i(B_{n,d}) + b_{i-2}(P_{d-3} \cup K_{1,n-d}) - 2b_{i-4}(P_{d-3}).$$

First note that $b_n(C_n) \ge 0 = b_n(U_{n,d})$, and that if $0 \le i \le n-1$, then by lemma 1 (a)

$$b_i(C_n) = b_i(P_n) + b_{i-2}(P_{n-2}).$$

By lemma 7, $P_n \succ B_{n,d}$ and by lemma 4, $P_{n-2} \succeq P_{d-3} \cup P_{n-d+1} \succ P_{d-3} \cup K_{1,n-d}$. So $b_i(C_n) \ge b_i(U_{n,d})$ and $b_4(C_n) > b_4(U_{n,d})$. Thus $C_n \succ U_{n,d}$.

In the following, suppose that the unique cycle of G is C_r where r < n. Let $P(G) = v_0, v_1, \ldots, v_d$ be a diametrical path of G. Then one of v_0, v_d must be a pendant vertex.

Suppose that all pendant vertices are on P(G). Since $p \ge 3$, there are at least two adjacency vertices u and v on C_r which are outside P(G) such that $G - uv \in \mathcal{T}(n, d_1), G - v \in \mathcal{T}(n - 1, d_2)$ and $G - u - v \in \mathcal{T}(n - 2, d_3)$, where $d_1, d_2, d_3 \ge d$. By lemmas 6 and 7, $G - uv \ge B_{n,d_1} \ge B_{n,d}, G - v \ge B_{n-1,d_2} \ge B_{n-1,d_1}$, and $G - u - v \ge B_{n-2,d_3} \ge B_{n-2,d_1}$.

If $r \not\equiv 0 \pmod{4}$, then

$$b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) + 2b_{i-r}(G - C_r).$$

By lemmas 2 and 5, $G - u - v \succeq B_{n-2,d} \succ P_{d-3} \cup Y_{n-d-1} \succ P_{d-3} \cup K_{1,n-d}$. Then $b_i(G) \ge b_i(U_{n,d})$ and $b_r(G) > b_r(U_{n,d})$. Thus $G \succ U_{n,d}$.

If $r \equiv 0 \pmod{4}$, then by lemma 1 (a), the expression for $b_i(U_{n,d})$ above may be written as

$$b_i(U_{n,d}) = b_i(B_{n-1,d}) + b_{i-2}(P_{d-2}) + b_{i-2}(P_{d-3} \cup K_{1,n-d-1}).$$

Suppose that $r \neq 4$. Then u and v can be chosen such that there is a vertex w on C_r but outside P(G), v is adjacent to u and w, and $G - u - v - w \in$

 $\mathcal{T}(n-3, d_4)$ with $d_4 \ge d$. By lemmas 6 and 7, $G-u-v-w \ge B_{n-3,d_4} \ge B_{n-3,d}$, Let u_1 (resp. w_1) be the vertex adjacent to u (resp. w) in C_r and $u_1 \ne v$ (resp. $w_1 \ne v$). By lemma 1 (b), $b_{i-4}(G-u_1-u-v-w) \ge b_{i-r}(G-C_r)$, $b_{i-4}(G-u-v-w-w_1) \ge b_{i-r}(G-C_r)$, and then

$$\begin{split} b_i(G-uv) &= b_i(G-v) + b_{i-2}(G-v-w) \\ &= b_i(G-v) + b_{i-2}(G-u-v-w) \\ &+ b_{i-4}(G-u_1-u-v-w) \\ &\geqslant b_i(G-v) + b_{i-2}(G-u-v-w) + b_{i-r}(G-C_r), \\ b_{i-2}(G-u-v) &= b_{i-2}(G-u-v-w) + b_{i-4}(G-u-v-w-w_1) \\ &\geqslant b_{i-2}(G-u-v-w) + b_{i-r}(G-C_r). \end{split}$$

So by lemma 1 (a)

$$b_i(G) = b_i(G - uv) + b_{i-2}(G - u - v) - 2b_{i-r}(G - C_r)$$

$$\ge b_i(G - v) + 2b_{i-2}(G - u - v - w)$$

$$\ge b_i(B_{n-1,d}) + 2b_{i-2}(B_{n-3,d}).$$

By lemmas 2 and 5, $B_{n-3,d} \succeq P_{d-3} \cup Y_{n-d} \succ P_{d-3} \cup K_{1,n-d-1}$. Then $b_{i-2}(B_{n-3,d}) \ge b_{i-2}(P_{d-3} \cup K_{1,n-d-1})$. Note that $b_{i-2}(B_{n-3,d}) \ge b_{i-2}(P_{d-2})$ and $b_2(B_{n-3,d}) > b_2(P_{d-2})$. So $b_i(G) \ge b_i(U_{n,d})$ and $b_4(G) > b_4(U_{n,d})$. Thus $G \succ U_{n,d}$.

Suppose that r = 4. If all edges on the cycle are not on P(G), then by a similar reasoning as above, we have $G > U_{n,d}$. Otherwise, there is exactly one edge on both C_4 and P(G). Then n = d + 3, and by lemmas 1 and 4, for some $j, 1 \le j \le d - 1$, we have

$$\begin{split} b_i(G) &= b_i(G - uv) + b_{i-2}(G - u - v) - 2b_{i-4}(G - C_4) \\ &= b_i(G - v) + b_{i-2}(P_j \cup P_{d+1-j}) + b_{i-2}(P_{d+1}) - 2b_{i-4}(P_j \cup P_{d-1-j}) \\ &= b_i(G - v) + b_{i-2}(P_j \cup P_{d-j}) + b_{i-4}(P_j \cup P_{d-j-1}) \\ &+ b_{i-2}(P_d) + b_{i-4}(P_{d-1}) - 2b_{i-4}(P_j \cup P_{d-1-j}) \\ &\ge b_i(G - v) + b_{i-2}(P_j \cup P_{d-j}) + b_{i-2}(P_d) \\ &\ge b_i(B_{n-1,d}) + b_{i-2}(P_j \cup P_{d-j}) + b_{i-2}(P_d). \end{split}$$

By lemma 4, $P_j \cup P_{d-j} \ge P_1 \cup P_{d-1} > 2P_1 \cup P_{d-2}$ and $P_d \ge P_{d-3} \cup P_3$. Then $b_i(G) \ge b_i(U_{n,d})$. Since $b_2(P_d) > b_2(P_{d-3} \cup P_3)$, we have $b_4(G) > b_4(U_{n,d})$. Thus $G > U_{n,d}$.

Now suppose that there is at least one pendant vertex outside P(G). Let u' be a pendant vertex of $U_{n,d}$ adjacent to the vertex v' of degree n - d + 1. Then $U_{n,d} - u' = U_{n-1,d}$ and $U_{n,d} - u' - v' = (n - d - 2)P_1 \cup B_{d,d-2}$.

Case 1. There is a pendant vertex u outside P(G) such that its neighbor v lies on C_r . Then $G - u \in \mathcal{U}(n - 1, d)$.

If v lies outside P(G), then $G - u - v \supseteq P_{d+1}$. So $G - u - v \succeq (n - d - 3)$ $P_1 \cup P_{d+1} \succ (n - d - 2)P_1 \cup B_{d,d-2}$. Suppose that v is on P(G). Then P(G) and C_r have common vertices, say v_l, \ldots, v_{l+s} with $s \ge 0$.

If s = 0, i.e., $v = v_l$ is the unique common vertex of P(G) and the cycle C_r , then $G - u - v \supseteq P_l \cup P_{d-l} \cup P_2$, and since

$$b_i(P_l \cup P_{d-l} \cup P_2) = b_i(P_l \cup P_{d-l}) + b_{i-2}(P_l \cup P_{d-l})$$

$$\ge b_i(P_{d-1}) + b_{i-2}(P_{d-3}) = b_i(B_{d,d-2})$$

and $b_4(P_l \cup P_{d-l} \cup P_2) > b_4(B_{d,d-2})$, we have $G - u - v \ge (n - d - 4)P_1 \cup P_l \cup P_{d-l} \cup P_2 > (n - d - 2)P_1 \cup B_{d,d-2}$.

Suppose that s > 0. If $v \neq v_l, v_{l+s}$, then $G - u - v \supseteq P_{d+1}$. So $G - u - v \ge P_{d+1} \succ P_1 \cup B_{d,d-2}$. Otherwise, for j = l or l + s, say j = l, $G - u - v \supseteq P_j \cup T_1$, where T_1 obtained by attaching a pendant edge to vertex v_{j+s} of the path v_{j+1}, \ldots, v_d . Note that

$$b_i(P_j \cup T_1) = b_i(P_j \cup P_{d-j}) + b_{i-2}(P_j \cup P_{s-1} \cup P_{d-j-s})$$

$$\geq b_i(P_{d-1}) + b_{i-2}(P_{d-3}) = b_i(B_{d,d-2}).$$

If $(j, s) \neq (1, 2)$, then $b_6(P_j \cup T_1) > b_6(B_{d,d-2})$, otherwise $P_j \cup T_1$ is a proper subgraph of G - u - v. Hence we have $G - u - v \succ (n - d - 2)P_1 \cup B_{d,d-2}$.

Now we have proved that $G - u - v \succ U_{n,d} - u' - v'$. By the induction hypothesis, $G - u \succeq U_{n-1,d}$. By lemma 8, $G \succ U_{n,d}$.

Case 2. The neighbor of any pendant vertex outside P(G) also lies outside C_r . If there is a pendant vertex u, adjacent to a vertex v outside P(G). Then $G-u-v \supseteq C_r \cup P_{d+1}$ or $G-u-v \supseteq G'$ where $G' \in \mathcal{U}(s, d)$, $d+2 \leq s \leq n-2$. If every pendant vertex outside P(G) is adjacent a vertex on P(G), then we choose a pendant vertex u, adjacent to $v = v_j$, such that $G-u-v \supseteq C_r \cup P_j \cup P_{d-j}$ or $G-u-v \supseteq P_j \cup G''$, where $G'' \in \mathcal{U}(s, d')$ for some s and d' with $s+j \leq n-2$ and $d' \geq d-j-1$. Hence there are three possibilities: $G-u-v \supseteq C_r \cup P_j \cup P_{d-j}$, $G-u-v \supseteq G'$ or $G-u-v \supseteq P_j \cup G''$.

First suppose that $G - u - v \supseteq C_r \cup P_j \cup P_{d-j}$. Then by lemma 1 (a)

$$b_{i}(C_{r} \cup P_{j} \cup P_{d-j}) \ge b_{i}(P_{r} \cup P_{j} \cup P_{d-j}) + b_{i-2}(P_{r-2} \cup P_{j} \cup P_{d-j}) -2b_{i-r}(P_{j} \cup P_{d-j}) \ge b_{i}(P_{r-1} \cup P_{j} \cup P_{d-j}) + b_{i-2}(P_{r-3} \cup P_{j} \cup P_{d-j}) \ge b_{i}(P_{r-1} \cup P_{d-1}) \ge b_{i}(P_{d+r-3}) \ge b_{i}(B_{d,d-2}).$$

By lemma 3, $G-u-v \ge (n-d-r-2)P_1 \cup C_r \cup P_j \cup P_{d-j} > (n-d-2)P_1 \cup B_{d,d-2}$. Now suppose that $G-u-v \supseteq G'$. By lemma 3 and the induction hypothesis, $G-u-v \ge (n-s-2)P_1 \cup U_{s,d} \ge (n-d-2)P_1 \cup U_{d+2,d}$. By lemma 1

$$b_i(U_{d+2,d}) = b_i(B_{d+2,d}) + b_{i-2}(P_{d-3} \cup P_3) - 2b_{i-4}(P_{d-3})$$

= $b_i(B_{d+2,d}) + b_{i-2}(P_{d-3}) \ge b_i(B_{d,d-2}).$

where $b_2(U_{d+2,d}) > b_2(B_{d,d-2})$. So $G - u - v \succeq (n - d - 2)P_1 \cup U_{d+2,d} \succ (n - d - 2)P_1 \cup B_{d,d-2}$.

Finally suppose that $G - u - v \supseteq P_j \cup G''$. By lemma 3 and the induction hypothesis, $G - u - v \succeq (n - 3 - d + j)P_1 \cup U_{d-j+1,d-j-1}$. Note that

$$b_i(P_j \cup U_{d-j+1,d-j-1}) = b_i(P_j \cup B_{d-j+1,d-j-1}) + b_{i-2}(P_j \cup P_3 \cup P_{d-j-4})$$

-2b_{i-4}(P_j \cup P_{d-j-4})
= b_i(P_j \cup P_{d-j}) + b_{i-2}(P_j \cup P_{d-j-2})
+b_{i-2}(P_j \cup P_{d-j-4})
$$\ge b_i(P_{d-1}) + b_{i-2}(P_{d-3}) = b_i(B_{d,d-2})$$

and $b_2(P_j \cup U_{d-j+1,d-j-1}) > b_2(B_{d,d-2})$. We have $G - u - v > (n - d - 2)P_1 \cup B_{d,d-2}$.

Now we have proved that $G - u - v \succ U_{n,d} - u' - v'$. By the induction hypothesis, $G - u \succeq U_{n-1,d}$. By lemma 8, $G \succ U_{n,d}$.

Combining Cases 1 and 2, we conclude that the result holds for $G \in U(n, d)$ for $d \ge 3$. The theorem is thus proved.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 10671076).

References

- I. Gutman and O.E. Polansky, *Mathematical Concepts in Organic Chemistry* (Springer-Verlag, Berlin, 1986).
- [2] I. Gutman, in: Algebraic Combinatorics and Applications, eds. A. Betten, A. Kohnert, R. Laue and A. Wassermann (Springer-Verlag, Berlin, 2001) pp. 196–211.
- [3] I. Gutman, J. Serb. Chem. Soc. 70 (2005) 441-456.
- [4] I. Gutman, Theoret. Chim. Acta (Berlin) 45 (1977) 79-87.
- [5] Y. Hou, J. Math. Chem. 29 (2001) 163-168.
- [6] W. Yan and L. Ye, Appl. Math. Lett. 18 (2005) 1046-1052.
- [7] H. Li, J. Math. Chem. 29 (1999) 145-169.
- [8] F. Zhang, Z. Li and L. Wang, Chem. Phys. Lett. 337 (2001) 125-130.
- [9] F. Li and B. Zhou, MATCH Commun. Math. Comput. Chem. 54 (2005) 379–388.
- [10] J. Zhang and B. Zhou, J. Math. Chem. 37 (2005) 423–431.
- [11] J. Rada, Discrete Appl. Math. 145 (2005) 437-443.
- [12] B. Zhou and F. Li, J. Math. Chem. 39 (2006) 465-473.
- [13] D. Cvetković, M. Doob and H. Sachs, *Spectra of Graphs* (Johann Ambrosius Barth, Heidelberg, 1995).